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Best approximation in the sense of Chebyshev is not always unique for y­
polynomials. In this paper we prove that in the normal case the number of best
approximations is finite. A necessary and sufficient condition on alternants of
local best approximations is established.

In connection with this criterion we define a new structural integer which
lies between the order k and the length I, i.e., between the structural integers
dominating the theory up to now.

The main tool of this research is the tangent cone. The cone coincides
with the tangent space defined by Meinardus and Schwedt [8] provided
that all characteristic numbers are distinct. But the tangent cone makes
a tangential characterization in the sense of Wulbert [11] possible even if
some characteristic numbers coalesce and if the tangent space suffers
a loss of dimension [6]. Since the tangent cone is a convex subset of a Haar
space we have even a local strong uniqueness condition.

Our investigations depend heavily on the results in [1]. Therefore we
proceed with enumerating formulas and theorems. All references to Formulas
(1.1)-(8.7) and Theorems 2.1-8.7 are related to that paper. The logical
dependence of the different sections is shown in Fig. 1.
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INTRODUCTION
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Since it is known that sums of exponentials are not varisolvent [2], there
are several open problems concerning Chebyshev approximation by these
functions. The questions remained unsettled when the investigations were
extended to y-polynomials [1, 5]. Hobby and Rice started the research
with the introduction of the proper y-polynomials of order N,

N

F(a, x) = L !Xvy(tv, x),
v=l

!Xv E IR, tv E T, (1.1)

where T is a subset of IR and y E C(T x X). As has been pointed out already
by those authors, it is necessary to close the family of y-polynomials in
order to ensure the existence of best approximations. Assuming the deriva­
tives y(") = o"yjot" exist, extended y-polynomials of the following form
are considered:

! Mv

F(a, x) = L L !Xv"yl"l(tv , x),
v~l ,,~O

!

L (1 + M v) = k ~ N.
v=l

(1.2)

Functions of the form (1.2) containing derivatives may be interpreted as
y-polynomials with coalescing characteristic numbers tv .

This extension, however, entailed some serious complications. The most
striking drawback was the gap between the sufficient and the necessary
conditions on alternants. This gap corresponds to the fact that best approxi­
mations are not always unique. Even the question whether the number of
best approximations is always finite remained unsettled.

In the present paper we overcome these difficulties. We establish a necessary
and sufficient condition by characterizing local best approximations instead
of best approximations.

Throughout this paper the family of y-polynomials VN is endowed with
the relative topology of C(X) which is induced by a (weighted) uniform
norm

11/11 = sup w(x) . I/(x)l.
XEX

For this, we restrict our attention to normal families, i.e., extended Descartes
families being normal in the sense of Definition 8.1.

There will be 14 constants C1 , C2 , ... , Cu. They are not universal; they
will depend on the function F[a], on subspaces, and on sets of indices, but
they will be independent of the functions in the neighborhood of F[a] which
are compared with F[a].
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Finally, we propose the reader glance at the examples in Section 13 in
advance. The first example illustrates once more the necessity ofthe extension
mentioned at the beginning. On the other hand for some special functions,
it is known that the best approximation is a unique proper y-polynomial
with IXv > °(see Section 5). This was considered by Karlin [7] in some
other context.

10. BASIC LEMMAS

In this section we investigate the neighborhood of those y-polynomials
having a maximally degenerate spectrum,

We establish a map into a certain cone, which in Section 12 will be identified
with the tangent cone. Moreover, the distance between the y-polynomials
and their images will be small of order greater than one.

The following lemma will be used repeatedly for the correlation of different
estimations.

LEMMA 10.1. Let h1 , h2 , ... , hm be a basis of an m-dimensional subspace
of a normed space. There are constants c1 , C2 > 0, such that for every
h = L:1 IXihi and for every subset I of the integers from I to m the following
estimations are valid

II L IXihi II ~ C1 • II h II,
'El

i = 1,2'00" m.

Proof Estimations of the second kind are often used when the existence
of best approximations in finite dimensional subspaces is proved [4]. By
setting C1 = C2 L:1 II hi II the first inequality is established. I

Throughout the rest of the paper we will assume that (ON+2/otN+2) Yet, x)
exists and is continuous. This is no drawback, since the interesting kernels
Yet, x) presented in Section 9 are even contained in the class Coo.

Let F* be a y-polynomial with m coalescing characteristic numbers:

m

F*(x) = L: IX"y,,(7", 7", , 7"; x),
,,=1

(10.1)
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The function is represented by using divided differences. Contrary to the
first part of the paper, the number of t-arguments is given as a suffix of y.
This is convenient, since often all arguments coincide or there are arguments
repeated and the number is not clear. In particular, we have y,lr, T, ... , T; x) =

y("-l)(T; x)/(P - I)! The y-polynomials from the neighborhood of F* are
written in the form

m

F(x) = L (3",Yitl , t2 ,... , t", ; x).
,,=1

(10.2)

We calculate the derivatives with respect to the parameters (3", t" and
make use of the relation

(10.3)

if fl- ~ v,

This yields

(0/0{3",) F = yitl ,... , t" ; x),

(%t",) F = L (3PYP+l(tl ,... , t. , tp ; x),
p>"

(B2/0{3", 0{3.) F = 0,

(02/0{3 ot) F = !y.+l(tl ,... , tv,. t", ; x),
• '" 0, otherwise,

(02/ot",2) F = 2 L (3PYP+2(tl ,... , tp, t" , t", ; x),
p>",

(02/ot", otv) F = L (3PYP+2(tl ,... , tp, t" , tv ; x),
fJ";;!:/.L

if fl- < v.

Set ~'" = (3" - a" and u" = t", - T for fl- = 1,2,..., m. F(x) is expanded
into a Taylor's series in powers of d = (~l ,... , ~m , Ul , ... , um) and terms of
order one and two are taken into account,

F(x) - F*(x) = L ~"Y.. + L L u"apyp+l + L L u,,~,Yv+l
IL J.L P~"" V IJ.~V

+ L L L U"u.apyp+2 + O(d3
)

u V>IJ. p>:v

m+2
= L epYp + O(d3).

p~l

(10.5)

Here, the coefficients ep = eid) are determined by collecting terms with
divided differences YP = Yp(T, T, ... , T; x) of the same order. For convenience,
the (dummy) variables ao = a-I = ~o = ~m+l = 0 are introduced. Since

L L: u",u. = t L L: U.U", + t L: u"2,
IJ, v;>u lJ, v tJ,
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we obtain from (10.5)
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ep = Op + (cxp_1 + 0p_l) L u" + CXp_2 L u"Uv ,

tL:(p-l J.L:(v<p-2

p = 1,2,... , m + 1,

(10.6)

We want to extract from (10.5) a statement which is independent of the
special choice of representation. Therefore, we define subsets of y-polynomials
with fixed characteristic numbers by

Moreover, for each y-polynomial with coalescing t's represented as in
(10.1), the sign of CXm is denoted as leading sign. Recall that this number
determines the sign vector introduced in Section 3.

Now we are ready to establish the following lemma.

LEMMA 10.2. Let m ~ 2 and Vm be a normal family. Then, given
F* E Vm[r, r, ... , r]\Vm_1 , there exists a constant C3 > 0 and a continuous
mapping 4>: Vm\Vm- 1 ----* Vm+2[r, r, ... , r], such that

4>(F*) = 0,

and the inequality

II F - F* - 4>(F)II :s:;: c3 11 4>(F)113
/
2 (10.8)

holds. Moreover, 4>(F) has the same leading sign as F* or 4>(F) E Vm+l .

Note. If y is only (m + 2)-times differentiable the inequality (10.8)
must be replaced by

II F - F* - 4>(F)II = 0(11 4>(F)II). (1O.8a)

This relation is sufficient for the proofs in the following sections, but we
prefer to use (10.8) and to avoid expressions with the Landau-symbols.

Proof of Lemma 10.2. By virtue of Theorem 8.3, a mapping with domain
Vm \ Vm-l is continuous if it is continuous with respect to the parameters of the
representation (10.2). Hence, by (10.6) and 4>o(F) = L:~~2 ep(d) yp(r, ... , r; x),
a continuous mapping 4>0: Vm\Vm_1 ----* Vm+2[r, ... , r] is defined. As a first
step we prove the inequality (10.8) for all F in a neighborhood of F*, with 4>
replaced by 4>0 .
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For economy, with each (finite) sequence of numbers {,8.}, we associate
the norm

II ,8 lin = sup 1,8. I·
l~v<n

In the particular case when n = m, the sufix m will be suppressed. Referring
to (10.6), we claim that

II e Ilm+2 > C4 • max(11 0 II, II u 11)2,
where

(10.9)I (Xm I
C4 = 8m2(1 + II (X 11)2 '

provided II u II ~ 1, 11011 ~ 1. Obviously, we have 0 < C4 < t I (Xm I. This
implies

II e Ilm+2 > I e m+ 2 1 = t I ctm IL U",2 > t I ctm I . II U 112

'"= C4 • II U 11 2
•

(10.10)

To prove II e Ilm+2 > c4 11 0112we consider two cases.

Case 1. Let II 0 II ~ 2m(1 + II (X II) . II u II. Combining this relation with
(10.10) yields

II e Ilm+2 > t I ctm I . [II 0 11/2m(1 + II (X 11)]2 = C4 • II 0112.

Case 2. Let II 0 II > 2m(1 + II (X II) II u II. Choose p, such that I op I = II 0 II.
From (10.6) we obtain

I e p I > I op I - I ctp _ 1 + 0p-l I L Iu. I - I (Xp_2 I L I u"'u. I
"',.

> II 0 II - (1 + II ct II) m II u II - II (X II . m2 II u 11
2

•

By virtue of the relation of 110 II and II u II we estimate

II e Iln+2 > I e p I > II 0 II - til 0 II - ! II 0 112 > !II 0 II > c4 11 011 2
•

Since C4 ~ ! this completes the proof of (10.9). Applying Lemma 10.1 to
Vm+2[T, ... , T] we obtain a constant Cs , such that h = 2::;:=:2 epyp implies

II e Ilm+2 > csil h II·

Since y(t, x) is assumed to be m + 2 times continuously differentiable in t,
we obtain from (10.5)

II F - F* - h II ~ C6 • max(11 0 II, II u 11)3, (10.12)

with h = 4>o(F) for every F in a neighborhood of F*.
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Combining (10.9), (10.11), and (10.12), the statement (10.8) is established
by setting cs = C~/2 • C:/2 • C6 •

Since rPo is continuous and rPo(F*) = 0, there exists a number r > 0, such
that II F - F* II < r ensures inequality (10.8) and II rPo(F)11 <; (2CS)-2. Hence,

II F - F* - rPo(F)11 ~ til rPo(F)II.

The triangle inequality implies

ill F - F* II ~ II rPo(F)II ~ 211 F - F* II· (10.12)

From (10.6) we know that rPo(F) =1= 0, provided F =1= F*. Consequently,

j
rPO(F), if II F - F* II ~ r,

r/J(F) = IIF - F* II
r/Jo(F)' max [1, 21IrPo(F)II]' if IIF - FII > r

defines a continuous mapping. In particular, if II F - F* II ~ r holds, the
definition implies II r/J(F)II ~ til F - F* II and

II F - F* - r/J(F)II ~ II F - F* [I + II r/J(F)II <; 3 II r/J(F)II
~ 3r-1 / 2 • II F - F* W/2 • II r/J(F)II ~ 6 . r-1 / 2 • II r/J(F)lls/2.

With this (10.8) is established for every FE Vm\Vm _ 1 , since Cs may be
replaced by 6,-1/2, if necessary.

Finally, the statement on the leading sign is an immediate consequence of
the fact that em+2 is obtained from (Xm by multiplying it with a nonnegative
number. I

If the domain is restricted to those y-polynomials with coalescing charac­
teristic numbers, we obtain a mapping which admits a sharper estimation.

LEMMA 10.3. Let m ~ 1 and Vm be a normal family. Then given
F* E Vm[T, T, ..., T]\Vm_1 there exists a constant C7 > 0 and a continuous
mapping of the subset of Vm\Vm _ 1 containing the elements whose m charac­
teristic numbers coincide, into Vm+1[T, T, ..., T], such that

r/J(F*) = 0,

and the inequality

holds.

II F - F* - r/J(F)II ~ C7 • II r/J(F)1I2 (10.13)
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Note. Instead of (10.13) an estimate of the form

II F - F - 4>(F)11 :::;; csil 4>(F)113
/
2

may be derived.

23

Outline of proof Consider in (10.5) and (10.6) only the terms of first
order and specialize to the case where U1 = U2 = ... = Um • It follows that

m+l

F(x) - F*(x) = L evYv(T, T, ... , T; x) + O(d2),
. v=l

where

p=1,2, ...,m,

By considering the cases where II S II :::;; 2m(1 + II a II) . I U1 I and II S II ~
2m(1 + II a II) . I U1 I it is easily verified that

II e11m+! ): C9 • max(11 S II, I U1 I),

where

C9 = I am 1/2(1 + II a II).

The remaining part of the proof proceeds by repeating arguments of the
proof for the preceeding lemma. I

11. STATIONARY POINTS

In this section we will prove that there are only a finite number of best
approximations apart from some pathological cases. To this end we will
verify that to every best approximation there is a neighborhood without
further best approximation. This statement follows from a more general
result including local best approximations and those y-polynomials satis­
fying the necessary condition on the alternant given in Theorem 6.2(ii).
Therefore, the notation of stationary elements is introduced.

DEFINITION 11.1. F[a] E VN is a stationary element to f in VN , if there
exists an alternant of length N + lea) + 1 for F[a].

Since the alternant condition in Theorem 6.2(ii) also applies to local best
approximations (short l.b.a.), every l.b.a. is a stationary element. Moreover,
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F[a] satisfies a local strong uniqueness condition (with respect to f) in VN ,

if there is a number c > 0 and a neighborhood U of F[a] such that

Ilf - F[b]11 ~ Ilf - F[a]!I + c II F[b] - F[a]11

holds for every F[b] E VN n U [Ref. (10)].

LEMMA 11.1 Let f E C(X) and p ~ 1. Then the set of functions in VN

having an alternant of length ~p, is open in VN •

Proof Set €(x) = f(x) - F*(x). Suppose that the corresponding alternant
has the exact length q, where q ~ p. Then, by standard arguments the
interval X is divided into q subintervals by q - I points tl < t2 < ... < tq-l
such that

a . (-l)i . w(x) . €(x) < II € II, i = 1,2'00" q, (11.1)

where a = +1 or a = 1, and to , tq denote the end points of X. Hence,

0< p = mi.n min {II € II - a . (-I)i . w(x) . €(x)}.
l~l:::;;;;q ei_l~x~ei

Assume that II F - F* II < pJ2. Then (11.1) holds with €(x) replaced by
f(x) - F(x). Hence there is no alternant of length q + 1 to f - F. I

Now we are ready to prove the main result of this section.

THEOREM 11.2. Let VN be a normalfamily and let F[a]E VN\VN- 1 be a
stationary element tofin VN • Then there is a neighborhood ofF[a] containing
no further stationary element.

Proof If F[a] is a stationary element, there is an alternant with exact
length N + lea) + 1 + p, where p ~ O. By virtue of Lemma 11.1 there is
a neighborhood of F[a], which contains no stationary point F[b] E VN with
l(b) > lea) + p. Therefore, in the remainder of this proof we restrict our
attention to elements F[b] E VN , for which l(b) ~ lea) + p is valid. We
establish a local strong uniqueness condition in the restricted set. From this,
by arguments similar to the theorem of de la Vallee-Poussin the statement
is established.

We write F[a] in the form

I m,

F(a, x) = L L (XV" • y,,(tv ,... , tv ; x),
v=l u=1

(11.2)
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and the elements of a neighborhood are represented by using the same
integer parameters I = I(a) and mv , v = 1,2,... , I,

I mv

F(b, x) = I L: f3vl' . Yl'(tV1 ,... , tv,," ; x).
v=l /..L=1

(11.3)

This representation is possible as long as the characteristic numbers tVl'
differ from tv by less than t min I tv - tV+l I. Moreover, the parameters
f3vl" tVl' are continuous functions of F[b]. Indeed, for the parameters tVl'
the statement is an immediate consequence of Theorem 8.3. The continuity
of the f3vl' follows from the same theorem, since the functions used in the
bases of (11.3) and (8.1) are connected by simple continuous transformations.
Hence, for v = 1,2,... , I the projections which send F[b] to the partial sums

mv

lJ'v: F[b] ---+ I f3vl' . YI'(tV1 ,... , tVl' ; x)
I'~1

(11.4)

are defined on a neighborhood ofF[a] and are continuous mappings into Vm •
Let / be a subset of the integers from 1 to I containing at most p elements.

We restrict ourselves to those elements in VN whose characteristic numbers
coalesce in certain partial sums. To be more precise, we assume

if v¢:I. (11.5)

Now Lemmas 10.2 and 10.3 are applied to the partial sums lJ'v(F[b]) for
v E / and for v¢: /, respectively. We obtain I constants c(v) depending only
on F[a] and the subset!, such that for F[b] there are !functions h(v) satisfying

and

if v E /,

if v¢:/,
(11.6)

lIlJ'vCF[b]) - lJ'vCF[a]) - h(v) II :s:; c(v) II h(v) 11 3 / 2,

By summing up it follows that

v = 1,2,..., I.

!

II F[b] - F[a] - h II :s:; L: c(v) II h(v) 11 3 / 2,

v=l

where h = L~~l h(v). By virtue of Lemma 10.1 the norms of the terms h(v),
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(v = 1, 2, ... , I) may be estimated by I[ h II. Hence, there exists a number
C10 > 0 depending on F[a] and I, such that1

[i F[b] - F[a] - h II < ClO '11 h 11
3

/
2

• (11.7)

Denote the number of elements of I by PI' By construction we have
PI <p. There is an alternant oflength N + I +PI + 1 to €(x) = f(x) - F(a, x).
Hence, zero is the best approximation to ! in the linear subspace
W = VN+I+2> [t1 , ... , t1 , t 2 , ... , tl]' where each characteristic number is counted

1

with the multiplicity given in (11.6). Since Yet, x) is an extended sign-regular
kernel, W satisfies the Haar condition. By virtue of the strong unicity
theorem [4, p. 80] there is a constant Cn > 0 such that

II € - h I[ ~ II € I[ + Cn . II h II,

Combining (11.7) and (11.8), we obtain

hE W. (11.8)

I[! - F[b][1 ~ II! - F[a][1 + cnll h II - ClO II h 113 /
2

• (11.9)

Since the mapping which sends F[b] to hEW is continuous, and zero is the
image of F[a], we have

(11.10)

for the image of every element in a neighborhood of F[a]. The inequalities
(11.9) and (11.10) imply

II! - F[b]11 ~ I[! - F[a]11 + tCnl1 h II. (11.11)

To finish the proof, we may assume that the characteristic numbers of
F[b] violate the relation

for each v E I, since otherwise our argument may be repeated with a reduced
set 1. Hence, I(b) ~ I(a) +PI' Suppose, that F[b] is a stationary element.

1 If (10.8) is replaced by (10.8a), we obtain the weaker relation

II F[b] - F[a] - h II = o(h).

This does not affect the proof, since we may replace the condition (11.10) below by

II F[b] - F[a] - h [I < ten' II h II.



y-POLYNOMIALS 27

We will derive a contradiction from (11.11). Set q = N + I(a) + Pl + 1.
Let Xl < X2 < .,. < Xq be the points of an alternant to F[b]. From (11.10)
and (11.11) we conclude

(-I)i . a . W(Xi) . [f(Xi) - F(a, Xi) - h(Xi)]

~ (-I)i . a' W(Xi)' [f(Xi) - F(b, Xi)] -II F[b] - F[a] - h II
~ Ilf - F[b]11 - ClO II h 11 3

(2

~ Ilf - F[a]11 + t . Cn II h II - Clo II h 11
3

(2

> Ilf - F[a]11 ~ (-I)i a . W(Xi) . [f(Xi) - F(a, Xi)], i = 1,2,... , q,

where a = +1 or a = -1. Hence,

i = 1,2'00" q,

and hEW has q - 1 = N + I(a) +Pl zeros, contradicting the Haar condi­
tion. Consequently, F[b] is not a stationary element, provided that F[b] lies
in the neighborhood of F[a] determined by (11.10) and the characteristic
numbers satisfy (11.5).

Since this consideration may be repeated for all sets I with P or less
integers, the statement holds for all elements with I(b) ~ I(a) +p. I

From Theorem 11.2 we obtain the following corollary.

COROLLARY 1l.3. Let VN be a normal family. Then the set of local best
approximations and the set of stationary elements are countable.

Proof The proof proceeds by induction on N. There is at most one
stationary element in Vl = Vlo. Assume that the statement has been proven
for N - 1 and consider the stationary elements in VN' By virtue of Theo­
rem 8.5 VN\ VN-l is a-compact. With this, it follows from the preceding
theorem that the subset of stationary points in VN\ VN-l is countable. On
the other hand, those stationary elements, which are already contained in
VN-l , are also stationary with respect to VN-l • By the inductive hypothesis
they can be counted. This completes the proof because l.b.a.'s are also
stationary elements. I

We remind the reader that we have more information in the case, when
N = 2. By virtue of Theorem 7.2 there is at most one l.b.a. in each sign
class V2(Sl, S2)' Combining the methods of Section 7 with the results of
Theorem 12.3 we obtain an analogous statement for the sign classes of V3 ,

apart from V3( + - +) and Va< - + -). In the latter sign classes there may
be more than one l.b.a. as is shown in Section 13.
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In the particular case when we are concerned with exponentials, i.e.,
with y(t, x) = eta; on IR X X, then we have a sharper result. The subsets [9]

{FE VN ; Ilf - F ~ M]

are compact or empty provided that M < inf{llf - FII; FE VN - 1}. As an
immediate consequence we have the following corollary.

COROLLARY 11.4. Let VN be the family of exponentials of order ~N.

Suppose that there is no best approximation to f in VN with an order
k ~ N - 1.2 Then there are only a finite number of best approximations to f
in VN •

12. THE CRITERION FOR LOCAL BEST ApPROXIMATIONS

According to Theorem 6.2 the elements F[a] in the particular subset VNo
are best approximations (and l.b.a.) if and only if there is an alternant of
length N + k(a) + I for F[a]. Then a best approximation F[a] may also be
characterized by the fact that zero is the unique best approximation to
f - F[a] in the linear tangent space. Following the terminology of Wulbert
[11] we have a tangential characterization.

If, on the other hand, F[a] E VN\ VNO, the tangent space suffers a loss of
dimension, as was pointed out by Kammler [6]. This corresponds to the
mentioned gap between necessary and sufficient conditions in Theorem 6.2.
In this section we will overcome these difficulties by introducing a convex
cone which will be denoted as tangent cone. A y-polynomial will be shown
to be an l.b.a., if and only if zero is a best approximation in the tangent
cone. Hence, l.b.a.'s are tangentially characterizable (if the terminology of
Wulbert [11] is extended in an appropriate way). Moreover, an l.b.a. may be
identified by an alternant condition.

We confine ourselves to the study of y-polynomials of maximal order,
since the extension to y-polynomials with lower order requires more intricate
considerations.

LetF[a] E VN\VN- 1 . To investigate the neighborhood of F[a] we represent
the y-polynomials almost in the form as in the preceding section, but
contrary to (11.2) the partial sums with m. = I and m. ? 2 are separated:

l mlJ l

F(a, x) = L L c.x."y,,(t., t. ,... , t. ; x) + L c.xvly(tv, x)
v~l ,,~l v~11+1

2 This additional hypothesis is not necessary when N <;:; 3.
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with
CXvmv 01= 0, v = 1,2,... , I. (12.1)

In particular, II = 11(a) denotes the number of characteristic numbers tv

associated with a multiplicity mv :?: 2. (The possibility that II or I - II is
equal zero is not excluded at this stage. As usual, sums are considered as
not written if the indexing set is void.)

In addition to I(a) and k(a) some significant parameters are defined in
(12.2) for F[a]. The most important of them is L = L(a).

v = 1,2,... , 11,

p,
'v = 10,

'f . (l)mv+l °1 U vU v+l - < ,I
otherwise, I v = 1,2,... , II - 1,

(12.2)

11

L = K - L'v'
v=l

EXAMPLE. Let y(t, x) = etx and F(a, x) = (-x + 5) e-3x - x2e2x + 4ex •

Then we have I = 3, k = 6, '1 = 1, '2 = 0, K = 5, L = 4.
Note that U v refers to the leading sign of the vth partial sum. Obviously,

we have 1:(; L :(; K :(; k = N. This corresponds to our intention to fill
the gap of the criterion when I(a) < k(a) holds. We introduce a convex
cone U!(a) in VN+K .

DEFINITION 12.1. Let F[a] E VN\VN - 1 • Then

where

* _ !mv + 2,mv - 2,
v = 1,2,... , II,
v> II'

(12.3)

is called the tangent cone at F[a] to VN •

In the remainder of this section we restrict our attention to elements
F[a] E VN\VNO, i.e., to y-polynomials with a degenerate spectrum, since
otherwise the tangent cone coincides with the (linear) tangent space. In
addition, we will assume that y(t, x) is an extended totally positive kernel,
though the main results may be modified so as to include extended sign­
regular kernels without major difficulties.



30 DIETRICH BRAESS

Since the tangent cone contains y-polynomials, we may consider the
associated generalized signs (c.r. Definition 3.1). The constraints of (12.3)
imply a bound for the number of sign changes.

LEMMA 12.1. Let hE W(a) be a y-polynomial of order p, and let
(SI , S2 ,... , sp) be the sign vector assigned to h. Then there are at most
N + L - 1 sign changes in the sequence SI ,S2 ,... , Sp' If the number of sign
changes equals N + L - 1, then Sp = Ul holds.

1

The inductive proof is left to the reader. (Observe that the signs assigned
to the terms with index v > 11 appear in pairs and have no influence on the
deficiency of sign changes.)

To prepare the main result we characterize best approximations in the
tangent cone.3

LEMMA 12.2. Let y be an extended totally positive kernel of order 2N
and let g E C(X). Assume that F[a] E VN\{VNO U VN- 1}.

(i) Zero is the best approximation to g in W(a), if and only if there is
an alternant of length N + L with sign -Ul on the right.

1

(ii) If zero is a best approximation to g in W(a), then there is a constant
C12 > 0 such that for each h E W(a)

II g - h II ): II g II + C12 . II h II· (12.4)

Proof We may assume g =1= 0, since there is nothing to prove for g == O.
Let zero be a best approximation to g in W(a). Assume that there is no

alternant of length N + L with sign -Ul on the right, in particular, there
1

is no alternant oflength N + L + 1. On the other hand, since W(a) contains
a Haar subspace of dimension N + I, there is an alternant of exact length
N + 1+ p with p ): 1. We select a subset I of p elements from the set of
integers {v; 1 ~ v ~ /1' rv = O} by the following procedure. If the alternant
has the sign -Ul on the right, we remove the greatest integer from the given

1

set. The subset which contains the p greatest integers of the (reduced) set is
denoted by I. Since zero is not the best approximation in an arbitrary
N + I + p dimensional subspace satisfying the Haar condition, there is
a function

I mv

h(x) = L L 0v..y..(tv, tv,"" tv ; x),
v=I 1.£=1

3 Uniqueness of best Chebyshev approximation may be proved for more general convex
sets. Let Vbe a finite dimensional subspace of C(X) and let '1'1, 'P2 ,••. , 'Pm be linear func­
tionals with domain V. Suppose that for any subset I of numbers from 1 to m the
subspaces {h E V; 'Pjh) = 0, v E I} satisfy the Haar condition. Then the best approximation
to each IE C(X) in W = {h E V; 'Pjh) ;;. 0, v = 1,2,... , m} is unique.
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where

iii = lmv + 2,
v mv + 1,

if v E I,
otherwise,

such that II g - h II < II g II holds. By standard arguments hex) has
N + I + p - 1 zeros and the generalized signs of h alternate. Moreover,
the signs are fixed by the sign of the alternant. This implies sign Dvm +2 = U v

for v E I and h E W(a), contradicting the optimality of the zero f~nction.
This proves the existence of an alternant as stated.

To prove the converse, assume that there is an alternant of length N + L
with the postulated sign, i.e., there are points Xl < X 2 < ... < XN+L such
that

(_I)N+L-i+l all' w(x;) = II gil, i = 1, 2, ... , N + L.

From Lemma 12.1 and Theorem 3.2 we know that the inequalities

g(x;) . hex;) ~ 0, i = 1,2,... , N + L

are violated by each h E W(a), h =I=- 0. Hence,

max {-g(x;) hex;)} > 0.
l';;;;I';;;;N+L

By compactness arguments we have

inf max {-w(x;) g(x;) . hex;)} = Cl2 • II g II > 0, (12.6)
hEW(a) l';;;;I';;;;N+L
Ilhll-l

where C12 is a positive constant. From this we obtain for each h E W(a) ,

II g - h II ~ max w(x;) Ig(x;) - h(x;)I
l';;;;I';;;;N+L

= max {II g II - (g(x;)/1I g 10 w(x;) . hex;)}
l';;;;I';;;;N+L

~ II g II + 1/11 gII . Cl2 • II g II . II h II = II g II + Cl2 • II h II·

Hence, zero is a best approximation to g in W(a) and the strong uniqueness
condition (ii) holds. I

Now we are ready to identify an l.b.a. by an alternant and to establish
the tangential characterization.

THEOREM 12.3. Let VN be a normal family with an extended totally
positive kernel. IfF(a) E VN\{VNO U VN- I } andfE C(X), thefollowing properties
are equivalent.
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(i) F[a] is a local best approximation to f in VN •

(ii) There is an alternant tof - F(a) of length N + L(a) with sign -all

on the right.

(iii) Zero is the best approximation to f - F(a) in W(a).

Proof. (iii) =:> (i). Set I = {I, 2, ... , II}' From the proof of Theorem 11.2
we know that there is a continuous mapping if> from a neighborhood of
F(a) in VN into VN+K' By virtue of the statement on the leading signs in
Lemma 10.2, the range of if> is contained in W(a), i.e., we have

if>(F[bDE W(a),

II F[b] - F[a] - if>(F[bDII ~ CIO II if>(F[bDI13 f2.

Set h = if>(F[bD. If II h II ~ (2cIO)-2, the triangle inequality implies

II h II ~ ! II F[b] - F[a]ll. (12.7)

By virtue of the preceding lemma, a strong uniqueness condition holds
in W(a). Let CI 2 be the attributed constant. Hence,

Ilf - F[b]11 ~ Ilf - F[a] + h II - cIO Ii h 11 3 (2

~ Ilf - F[a]11 + CI 2 II h II - CIO II h 11 3(2

~ Ilf - F[a]11 + !C1211 h II
~ Ilf - F[a]ll,

(12.8)

provided that II h II < HCI2/ClO)2. Consequently, F[a] is an l.b.a.

(i) =:> (ii). Assume that F[a] is an l.b.a. The partial sums (11.4) will be
represented in an appropriate form. Let m ~ 2 and u ~ O. The functions
in Vm[t, t, ... , t, t + UIf2 , t - uIf2] may be written in the form

m-2
F(x) = I (3"y,.(t, ... , t; x)

,,~I

+ !(3m-I[Ym-l(t, ... , t, t + UI(2; x) + Ym-I(t, ... , t, t - U
If2 ; x)]

+ (3mYm(t, ... , t, t + uIf2, t - UIf2 ; x). (12.9)

This is obvious if u = 0 holds and is easily verified for u > O. Observe that
a special situation is given in (7.3). The derivatives at u = 0 are

0/0{3" F = Y" , p- = 1,2,... , m,
m

%t F = L p- . {3"Y"+l ,
,,~I

%u F = {3m-IYm+l + {3mYm+2 .
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m+2

L epyp(t, t, ... , t; x)
p=l
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with em+2 restricted by em+2 • (3m ;? 0 may be written as linear combinations
of derivatives

with ();? O. A simple comparison of coefficients establishes that (), 0, 0""
Om-1 , ••• , 01 can be determined successively such that the wanted function
is generated.

To continue the proof we return to the y-polynomials F[b] lying in the
neighborhood of F[a]. Starting from the representation (1.2), in addition
to O:v" and tv , the parameters Uv are introduced in terms with mv ;? 2. This
means that the partial sums are written in the form given by (12.9). It follows
from the preceding discussion that all elements of the tangent cone W(a)
may be generated as linear combinations of derivatives with respect to
these parameters taking sign restrictions into account. Set

M* = {x E X; w(x) . I f(x) - F(a, x)1 = Ilf - F[a]!]}.

By virtue of Lemma 7.1 which may be applied to l.b.a.'s as well, we obtain

min (f(x) - F(a, x)) . hex) ~ 0
ftEM*

for every h E W(a). Hence, from the Kolmogorov criterion we know that
zero is optimal to f - F[a] in W(a).

(ii) =:> (iii) is already established in the preceding lemma. I

The proof of Theorem 12.3, in particular inequalities (12.7) and (12.8),
yield a local strong uniqueness condition. This condition also holds for
y-polynomials in vN°\V.L1 as may be proved with Lemma 9 in [10].

COROLLARY 12.4. Let VN be a normal family and fE C(X). Then every
local best approximation in VN\ VN-1 satisfies a local strong uniqueness condi­
tion.

The local strong uniqueness condition implies that the l.b.a. changes only
slightly if the function f is altered slightly. This can be seen more precisely
from the following theorem.
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THEOREM 12.5. Let VN be a normal family and fE C(X). Assume that
F[a] E VN\VN- I is a local best approximation tof Then there is a constant CI3

and a neighborhood ~ offin C(X), such that for each g E ~ there is a local
best approximation F[b] in VN satisfying

II F[b] - F[a]11 ~ CI3 '11 g -fll.

Proof By virtue of Corollary 12.4 there are constants r, Cu > 0 such
that

Ilf - F[b]11 ~ Ilf - F[a]11 + Cull F[b] - F[a]11 (12.11)

provided II F[b] - F[a]11 ~ r. We may assume (after reducing r if necessary)
that the set

v = {F[b] E VN ; II F[b] - F[a]11 ~ r}

does not intersect VN - I • Since VN is a normal family, Vis compact. Assume
that g satisfies II g - fll < ! . Cu . r. Let F[b*] be a best approximation to g
in V. Thus,

II g - F[b*]11 ~ II g - F[a]11 ~ II g - fll + Ilf - F[a]ll.

On the other hand, it follows from (12.11) that

II g - F[b*]11 ~ Ilf - F[b*]11 - II g - fll
~ Ilf - F[a]11 + Cull F[b*] - F[a]11 - II g - fll.

Combining the last inequalities we obtain

II F[b*] - F[a]11 <: 2/CI4 . II g - fll.

(12.12)

Hence, F[b*] does not lie on the boundary of V and is an l.b.a. in VN • I
Note that Theorem 12.5 does not state that there is a unique l.b.a.

13. EXAMPLES FOR UNIQUENESS AND NONUNIQUENESS

In this section two examples are discussed. One of them illustrates many
pathological features while the other shows an extremely good behavior.
Both examples refer to approximation by exponentials.

EXAMPLE 13.1. Let us consider the approximation of f(x) = cos rr/2 . x
in the interval [-1, +1] by exponentials. As was pointed out by Kammler [6],
f(x) - F(a, x) has at most k(a) + 1 zeros and, therefore, for N ~ 2, each
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stationary element in VN has the maximal order and a maximally degenerate
spectrum, i.e., we have k(a) = Nand lea) = 1. Hence, stationary elements
can be written in the form

F(a, x) = etx . p(x), (13.1)

where p(x) is a polynomial of exact degree N - 1.
At first we claim that every function in a suitable neighborhood of I in

C(X) has a best approximation F[b] in VN with l(b) = 1. Suppose to the
contrary that there is a sequence {In} which converges to cos TT/2 . x, such
that In has a best approximation F[an] in VN satisfying lean) ?: 2. The
sequence {F[an ]} is a minimal sequence with respect to f(x) = cos TT/2 . x.
By virtue of Korollar 1 and Satz 4 in [9] a subsequence of {F[an ]} converges
uniformly to a best approximation F[a*] of cos TT/2 . x. From this, by the
same argument as that used in the proof of Lemma 11.1 we conclude that
there is only an alternant of length N + 2 to In - F[an] for sufficiently
large n. This contradicts lean) ?: 2.

Consequently, the set of functions in C(X) having a best approximation
in VNo is not dense in C(X), although VNo is dense in VN . We emphasize
that for this reason we must not restrict our attention to the approximation
in VNO, though the restriction would help to avoid many difficulties.

Next we prove that there are at least two best approximations in VN ,

provided N is even.4 Let F(a*, x) = e"x . p(x) be a best approximation.
Since the degree of the polynomial p(x) is odd, F(a**, x) = F(a*, -x) is
a different y-polynomial. From f(x) = f( -x) we conclude that F(a**) is
another best approximation.

Finally we verify that one sign class of Va contains at least two l.b.a.'s
to cos TT/2 . x in Va' It is sufficient to show that there is an l.b.a.
F[al ] E Va(+-+) and an l.b.a. F[a2 ] E Va(-+-). Since the approximation
problem with fixed characteristic numbers has a unique solution, at least
one of them has a characteristic number t =1= O. Actually, this is true for
F[al ]. Hence, F(aa , x) = F(al , -x) defines another l.b.a.

To prove the statement we start from the best approximation F(a, x) =
eTX(cxI + CX2X) with CX2 > 0 to f(x) in V2 . Choose t2 < T and consider the
exponentials of the form (f11 + f12X) etlX + f1aet2x with tl > t2 . Since the
derivatives OF/otl ,oF/of1v , v = 1,2,3 span a Haar subspace and the alternant
to1- F[a] has length 4, the y-polynomial F[a] is not an l.b.a. in this subset
and there is a better approximation F[bo] with parameter f12 > O. Hence,
F[bo] E Va(SI , - +), where Sl will be specified later. Denote the best approxi­
mation to I in Va(SI' - +) U V2 , which is an existence set, by F[al ]. By

• The reader may prove by the same arguments that f(x) = sin 7T/2 . x has at least two
best approximations in VN , provided N is odd and N> 3.
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construction we have F[al ] rt V2 and F[al ] is an l.b.a. in Va' From (13.1)
we conclude Sl = +. If we repeat this procedure with t 2 > T we obtain
an l.b.a. in Va( - +-).

After the presentation of the example with bad behavior we discuss a
function with the opposite features.

EXAMPLE 13.2. Let us consider the approximation of f(x) = (1 + X)-I

in the interval [0, I]. By multiplying f(x) - F(a, x) with (1 + x) we get
a y-polynomial of order k(a) + l(a) + 1 and we conclude that the difference
has at most k(a) + l(a) zeros. Hence, each stationary element in VN has
the degree k(a) = N. We prove by induction that the best approximation
tofin VN belongs to VN+\V;-I'

This is obvious for N = 1. Let us assume that it is true for N.
Since f(x) - F(a, x) has 2N zeros, we have (1 + x)[f(x) - F(a, x)] =
1 - (1 + x)F(a,x)E V2N+I (+, -, +,..., -+). By virtue of Theorem 4.5
the best approximation VN+1 satisfies k+ = N + 1.

In addition, the best approximation to (1 + X)-I in VN is unique because
we have uniqueness in VN +. As was proven in [3] by some simple arguments,
the spectra of the best approximations are not bounded when N tends to
infinity.

Note added in proof In Section 12 the characterization of local best approximations was
performed by a direct approach. Referring to the author's recent article: "Kritische Punkte
bei der nichtlinearen Tschebyscheff-Approximation," Math. Z. 132 (1973), 327-341, this
approach may be understood in the more general framework of critical point theory. Then
the introduction of the tangent cone is also motivated from the point of view of differential
topology.

ACKNOWLEDGMENT

The author wishes to thank Professor W. Jager for many stimulating discussions.

REFERENCES

1. D. BRAESS, Chebyshev approximation by y-polynomials, J. Approximation Theory
9 (1973), 2~3.

2. D. BRAESS, Vber die Approximation mit Exponentialsummen, Computing 2 (1967),
309-321.

3. D. BRAESS, Die Konstruktion der Tschebyscheff-Approximierenden bei der Anpassung
mit Exponentialsummen, J. Approximation Theory 3 (1970), 261-273.

4. E. W. CHENEY, "Introduction to Approximation Theory," McGraw-Hill, New York,
1966.

5. C. R. HOBBY AND J. R. RICE, Approximation from a curve of functions, Arch. Rat.
Mech. Anal. 27 (1967), 91-106.



y-POLYNOMIALS 37

6. D. KAMMLER, Characterization of best approximations by sums of exponentials,
J. Approximation Theory 9 (1973), 173-191.

7. S. KARLIN, On a class of best nonlinear approximation problems, Bull. Amer. Math.
Soc. 78 (1972), 43-49.

8. G. MEINARDUS AND D. SCHWEDT, Nichtlineare Approximation, Arch. Rat. Mech.
Anal. 17 (1964), 297-326.

9. E. SCHMIDT, Zur Kompaktheit bei Exponentialsummen, J. Approximation Theory
3 (1970), 445-454.

10. D. WULBERT, Uniqueness and differential characterization of approximations from
manifolds of functions, Amer. J. Math. 93 (1971), 350-366.

11. D. WULBERT, Nonlinear approximation with tangential characterization, Amer.
J. Math. 93 (1971), 718-730.


